Self-driving vehicles are cars or trucks in which human drivers are never required to take control to safely operate the vehicle. Also known as autonomous or “driverless” cars, they combine sensors and software to control, navigate, and drive the vehicle.
Different cars are capable of different levels of selfdriving, and are often described by researchers on a scale of 0-5.
Level 0: All major systems are controlled by humans
Level 1: Certain systems, such as cruise control or automatic braking, may be controlled by the car, one at a time
Level 2: The car offers at least two simultaneous automated functions, like acceleration and steering, but requires humans for safe operation
Level 3: The car can manage all safety-critical functions under certain conditions, but the driver is expected to take over when alerted
Level 4:The car is fully-autonomous in some driving scenarios, though not all
Level 5: The car is completely capable of self-driving in every situation
How They Work
(i)Various self-driving technologies have been developed
by Google, Uber, Tesla, Nissan, and other major
automakers, researchers, and technology companies
(ii)While design details vary, most self-driving systems
create and maintain an internal map of their
surroundings, based on a wide array of sensors, like
radar. Uber’s self-driving prototypes use sixty-four
laser beams, along with other sensors, to construct
their internal map; Google’s prototypes have, at various
stages, used lasers, radar, high-powered cameras, and
sonar.
(iii)Software then processes those inputs, plots a path, and
sends instructions to the vehicle’s “actuators,” which
control acceleration, braking, and steering. Hard-coded
rules, obstacle avoidance algorithms, predictive
modeling, and “smart” object discrimination (ie,
knowing the difference between a bicycle and a
motorcycle) help the software follow traffic rules and
navigate obstacles.
(iv)Partially-autonomous vehicles may require a human
driver to intervene if the system encounters
uncertainty; fully-autonomous vehicles may not even
offer a steering wheel.
(v)Self-driving cars can be further distinguished as being
“connected” or not, indicating whether they can
communicate with other vehicles and/or infrastructure,
such as next generation traffic lights. Most prototypes
do not currently have this capability.
Impacts
The costs and benefits of self-driving cars are still largely hypothetical. More information is needed to fully assess how they’ll impact drivers, the economy, equity, and environmental and public health.
Safety : is an overarching concern. Many thousands of people die in motor vehicle crashes every year in the United States (more than 30,000 in 2015); self-driving vehicles could, hypothetically, reduce that number— software could prove to be less error-prone than humans—but cyber security is still a chief concern.
Environmental:impacts are a serious concern, and a major uncertainty. Accessible, affordable, and convenient self-driving cars could increase the total number of miles driven each year. If those vehicles are powered by gasoline, then transportation-related climate emissions could skyrocket. If, however, the vehicles are electrified—and paired with a clean electricity grid—then transportation emissions could drop, perhaps significantly.
To the extent that electrified self-driving cars enable more shared rides (for example, through services such as Lyft or Uber), emissions could drop even further. The Union of Concerned Scientists has worked on transportation-related policy issues for decades, and advocates for equitable, low-pollution vehicles, fuels, and infrastructure. In February 2017 we released a policy brief that outlines the challenges and benefits of self-driving technology, and that includes seven principles for policy makers, companies, and other stakeholders to use as guides.
-